Abstract
(1) Background: This paper proposes a strategy coupling Demand Response Program with Dynamic Thermal Rating to ensure a transformer reserve for the load connection. This solution is an alternative to expensive grid reinforcements. (2) Methods: The proposed methodology firstly considers the N-1 mode under strict assumptions on load and ambient temperature and then identifies critical periods of the year when transformer constraints are violated. For each critical period, the integrated management/sizing problem is solved in YALMIP to find the minimal Demand Response needed to ensure a load connection. However, due to the nonlinear thermal model of transformers, the optimization problem becomes intractable at long periods. To overcome this problem, a validated piece-wise linearization is applied here. (3) Results: It is possible to increase reserve margins significantly compared to conventional approaches. These high reserve margins could be achieved for relatively small Demand Response volumes. For instance, a reserve margin of 75% (of transformer nominal rating) can be ensured if only 1% of the annual energy is curtailed. Moreover, the maximal amplitude of Demand Response (in kW) should be activated only 2–3 h during a year. (4) Conclusions: Improvements for combining Demand Response with Dynamic Thermal Rating are suggested. Results could be used to develop consumer connection agreements with variable network access.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference76 articles.
1. Global Energy Transformation: A Roadmap to 2050,2018
2. Electrification with Renewables. Driving the Transformation of Energy Services,2019
3. Amplification of future energy demand growth due to climate change
4. Capital Costs for Transmission and Substations. Recommendations for WECC Transmission Expansion Planning Western Electricity Coordinating Council;Mason,2012
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献