Adaptive Single-Pole Auto-Reclosing Scheme Based on Secondary Arc Voltage Harmonic Signatures

Author:

Han Joon,Lee Chul-Moon,Kim Chul-HwanORCID

Abstract

This paper presents an advanced adaptive single-pole auto-reclosing (ASPAR) scheme based on harmonic characteristics of the secondary arc voltage. For analysis of the harmonics, short-time Fourier transform (STFT), which is a universal signal processing tool for transforming a signal from the time domain to the frequency domain, is utilized. STFT is applied to extract the abnormal harmonic signature from the voltage waveform of a faulted phase when a transient or permanent fault occurs on a power transmission line. The proposed scheme uses the total harmonic distortion (THD) factor to determine the fault type based on the variation and distortion characteristics of the harmonics. Harmonic components in the order of odd/even are also utilized to detect the secondary arc extinction time and guide the reclosing operation. Based on these factors, two coordinated algorithms are proposed to reduce the unnecessary dead time in conventional auto-reclosing methods and enable an optimal reclosing operation in the event of a single-pole to ground fault. The proposed ASPAR scheme is implemented using the electromagnetic transient program (EMTP), and various simulations are conducted for actual 345 and 765 kV Korean study systems.

Funder

Korea Institute of Energy Technology Evaluation and Planning

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3