A Convolutional Neural Network-Based Model for Multi-Source and Single-Source Partial Discharge Pattern Classification Using Only Single-Source Training Set

Author:

Mantach SaraORCID,Ashraf AhmedORCID,Janani HamedORCID,Kordi BehzadORCID

Abstract

Classification of the sources of partial discharges has been a standard procedure to assess the status of insulation in high voltage systems. One of the challenges while classifying these sources is the decision on the distinct properties of each one, often requiring the skills of trained human experts. Machine learning offers a solution to this problem by allowing to train models based on extracted features. The performance of such algorithms heavily depends on the choice of features. This can be overcome by using deep learning where feature extraction is done automatically by the algorithm, and the input to such an algorithm is the raw input data. In this work, an enhanced convolutional neural network is proposed that is capable of classifying single sources as well as multiple sources of partial discharges without introducing multiple sources in the training phase. The training is done by using only single-source phase-resolved partial discharge (PRPD) patterns, while testing is performed on both single and multi-source PRPD patterns. The proposed model is compared with single-branch CNN architecture. The average percentage improvements of the proposed architecture for single-source PDs and multi-source PDs are 99.6% and 96.7% respectively, compared to 96.2% and 77.3% for that of the traditional single-branch CNN architecture.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3