Electrophysical Properties of PMN-PT-Ferrite Ceramic Composites

Author:

Bochenek ,Niemiec ,Skulski ,Brzezińska

Abstract

Ferroelectromagnetic composites based on (1−x)PMN-(x)PT (PMN-PT) powder and Ni-Zn ferrite powder were obtained and are described in this work. As a ferroelectric component, we used (1−x)PMN-(x)PT solid solution (with x = 0.25, 0.28, 0.31, 0.34, 0.37, 0.40), synthesized using the sol-gel method. As a magnetic component, we used nickel-zinc ferrite, obtained using classic ceramic technology. The six compositions of PMN-PT used have rhombohedral symmetry, tetragonal one and mixture of these phases (morphotropic phase area), depending on x. The final ceramic composite samples were obtained using the classic methods involving the calcination route and pressureless final sintering (densification). The properties of the obtained ceramic composite samples were investigated, including microstructure SEM (scanning electron microscope), dielectric properties, electromechanical properties, and DC (Direct Current) electrical conductivity. Results showed that the microstructures of the PP-F composite samples characterized by larger grains were better crystallized, compared with the microstructures of the PMN-PT ceramic samples. The magnetic properties do not depend on the ferroelectric component of the composite samples, while the insertion of ferrite into the PMN-PT compound reduces the values of remnant and spontaneous polarization, as well as the coercive field. The dielectric measurements also indicated that the magnetic subsystem influences the dielectric properties. The present results show that the PP-F ceramic composite has good dielectric, magnetic, and piezoelectric properties, which predisposes this type of material to specific applications in microelectronics and micromechatronics.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3