Abstract
A novel procedure to determine the environmental quality of boilers based on the combustion entropy degradation, the pollutants emission and the device efficiency is proposed. The entropy generation due to the chemical reaction was determined and then the irreversibilities on the external environment were first quantified. Successively, the entropy generation numbers of the combustion reactions were combined with the heat transfer process entropy generation of the boilers to consider the actual functioning conditions, in order to quantify the environmental damages by introducing an Environment Quality Index (EQI). A parametric study varying the heat exchanger efficiency, fluid flow rates and temperatures, for different fuel typologies, was performed to assess the environmental impact. Solar hydrogen was considered for its importance as future renewable energy carrier. The results showed that the highest EQI was produced by the natural gas, but if heat exchanger parameters are defined opportunely, the score gap with other fluids can be recovered. For hydrogen and coal decreasing the flue gases temperature or by increasing the flue gases mass flow rate can strongly improve the EQI index, whereas the gap recovery for Diesel is rather difficult.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献