Abstract
Cell growth in plants occurs due to relaxation of the cell wall in response to mechanical forces generated by turgor pressure. Growth can be anisotropic, with the principal direction of growth often correlating with the direction of lower stiffness of the cell wall. However, extensometer experiments on onion epidermal peels have shown that the tissue is stiffer in the principal direction of growth. Here, we used a combination of microextensometer experiments on epidermal onion peels and finite element method (FEM) modeling to investigate how cell geometry and cellular patterning affects mechanical measurements made at the tissue level. Simulations with isotropic cell-wall material parameters showed that the orientation of elongated cells influences tissue apparent stiffness, with the tissue appearing much softer in the transverse versus the longitudinal directions. Our simulations suggest that although extensometer experiments show that the onion tissue is stiffer when stretched in the longitudinal direction, the effect of cellular geometry means that the wall is in fact softer in this direction, matching the primary growth direction of the cells.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献