An Artificial Intelligence System for Optimizing Radioactive Iodine Therapy Dosimetry

Author:

Georgiou Michalis1,Nielsen Joshua23,Chiriboga Rommel2,Kuker Russ1ORCID

Affiliation:

1. Department of Radiology, University of Miami Miller School of Medicine, Miami, FL 33136, USA

2. Department of Radiology, Jackson Memorial Hospital, Miami, FL 33136, USA

3. Nuclear Medicine, Brooke Army Medical Center, San Antonio, TX 78234, USA

Abstract

Thyroid cancer, specifically differentiated thyroid carcinoma (DTC), is one of the most prevalent endocrine malignancies worldwide. Radioactive iodine therapy (RAIT) using I-131 has been a standard-of-care approach for DTC due to its ability to ablate remnant thyroid disease following surgery, thus reducing the risk of recurrence. It is also used for the treatment of iodine-avid metastases. RAIT dosimetry can be employed to determine the optimal treatment dose of I-131 to effectively treat cancer cells while safeguarding against undesirable radiation effects such as bone marrow toxicity or radiation pneumonitis. Conventional dosimetry protocols for RAIT, however, are complex and time-consuming, involving multiple days of imaging and blood sampling. This study explores the use of Artificial Intelligence (AI) in simplifying and optimizing RAIT. A retrospective analysis was conducted on 83 adult patients with DTC who underwent RAIT dosimetry at our institution between 1996 and 2023. The conventional MIRD-based dosimetry protocol involved imaging and blood sampling at 4, 24, 48, 72, and 96 h post-administration of a tracer activity of I-131. An AI system based on a deep-learning neural network was developed to predict the maximum permissible activity (MPA) for RAIT using only the data obtained from the initial 4, 24, and 48 h time points. The AI system predicted the MPA values with high accuracy, showing no significant difference compared to the results obtained from conventional MIRD-based analysis utilizing a paired t-test (p = 0.351, 95% CI). The developed AI system offers the potential to streamline the dosimetry process, reducing the number of imaging and blood sampling sessions while also optimizing resource allocation. Additionally, the AI approach can uncover underlying relationships in data that were previously unknown. Our findings suggest that AI-based dosimetry may be a promising method for patient-specific treatment planning in differentiated thyroid carcinoma, representing a step towards applying precision medicine for thyroid cancer. Further validation and implementation studies are warranted to assess the clinical applicability of the AI system.

Publisher

MDPI AG

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3