Abstract
Obstructive sleep apnea (OSA) is a common respiratory disorder associated with autonomic nervous system (ANS) dysfunction, resulting in abnormal heart rate variability (HRV). Capable of acquiring heart rate (HR) information with more convenience, wearable photoplethysmography (PPG) bracelets are proven to be a potential surrogate for electrocardiogram (ECG)-based devices. Meanwhile, bracelet-type PPG has been heavily marketed and widely accepted. This study aims to investigate the algorithm that can identify OSA with wearable devices. The information-based similarity of ordinal pattern sequences (OP_IBS), which is a modified version of the information-based similarity (IBS), has been proposed as a novel index to detect OSA based on wearable PPG signals. A total of 92 PPG recordings (29 normal subjects, 39 mild–moderate OSA subjects and 24 severe OSA subjects) were included in this study. OP_IBS along with classical indices were calculated. For severe OSA detection, the accuracy of OP_IBS was 85.9%, much higher than that of the low-frequency power to high-frequency power ratio (70.7%). The combination of OP_IBS, IBS, CV and LF/HF can achieve 91.3% accuracy, 91.0% sensitivity and 91.5% specificity. The performance of OP_IBS is significantly improved compared with our previous study based on the same database with the IBS method. In the Physionet database, OP_IBS also performed exceptionally well with an accuracy of 91.7%. This research shows that the OP_IBS method can access the HR dynamics of OSA subjects and help diagnose OSA in clinical environments.
Funder
Guangdong Basic and Applied Basic Research Foundation
Shenzhen Science and Technology Plan for fundamental research
Subject
Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献