Single-Particle Optical Imaging for Ultrasensitive Bioanalysis

Author:

Liu Yujie,Li Binxiao,Liu Baohong,Zhang Kun

Abstract

The quantitative detection of critical biomolecules and in particular low-abundance biomarkers in biofluids is crucial for early-stage diagnosis and management but remains a challenge largely owing to the insufficient sensitivity of existing ensemble-sensing methods. The single-particle imaging technique has emerged as an important tool to analyze ultralow-abundance biomolecules by engineering and exploiting the distinct physical and chemical property of individual luminescent particles. In this review, we focus and survey the latest advances in single-particle optical imaging (OSPI) for ultrasensitive bioanalysis pertaining to basic biological studies and clinical applications. We first introduce state-of-the-art OSPI techniques, including fluorescence, surface-enhanced Raman scattering, electrochemiluminescence, and dark-field scattering, with emphasis on the contributions of various metal and nonmetal nano-labels to the improvement of the signal-to-noise ratio. During the discussion of individual techniques, we also highlight their applications in spatial–temporal measurement of key biomarkers such as proteins, nucleic acids and extracellular vesicles with single-entity sensitivity. To that end, we discuss the current challenges and prospective trends of single-particle optical-imaging-based bioanalysis.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

Reference161 articles.

1. Real estimates of mortality following COVID-19 infection;Baud;Lancet Infect. Dis.,2020

2. GBD 2016 Dementia Collaborators (2019). Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol., 18, 88–106.

3. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries;Siegel;CA Cancer J. Clin.,2018

4. Brain and other central nervous system tumor statistics, 2021;Miller;CA Cancer J. Clin.,2021

5. Patterns and trends of cancer incidence in children and adolescents in China, 2011–2015: A population-based cancer registry study;Sun;Cancer Med.,2021

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3