Investigating the Effects of a Phytobiotics-Based Product on the Fecal Bacterial Microbiome of Weaned Pigs

Author:

Fresno Rueda Anlly,Samuel RyanORCID,St-Pierre BenoitORCID

Abstract

The transition to a solid diet, as well as environmental and social stress, have a direct impact on swine gut physiology during weaning, affecting host gastrointestinal functions, as well as resident symbiotic microbial communities. While plant-derived bioactive products, such as phytobiotics, have shown great potential to mitigate these challenges, providing benefits such as antimicrobial, antioxidant, and anti-inflammatory activities, their mechanisms of action remain largely unexplored. To gain more insight, a 21 day trial is conducted to investigate the effects of LiveXtract, a commercial plant-based product, using fecal samples as a proxy for gut bacteria in weaned pigs. High-throughput sequencing of amplicons targeting the V1–V3 region of the 16S rRNA gene is used to determine bacterial composition at days 1 (pre-treatment), 4, 10, and 21 postweaning. Our results show that Lactobacillaceae and Peptostreptococcaceae are both higher in the supplemented group at D4 (p < 0.05), while Streptococcaceae are significantly lower in the treated group at D10 and D21. At D10, Erysipelotrichaceae are lower, and Veillonellaceae are higher in the treated samples than the control group (p < 0.05). Of the thirteen abundant Operational Taxonomic Units (OTUs) that have different representation between treated and control pigs (p < 0.05), six are predicted to be lactate producers (affiliation to Lactobacillus or Streptococcus), and one is predicted to be a lactate utilizer, based on its high identity to Megasphaera elsdenii. Together, these data suggest that phytobiotics may provide a favorable metabolic equilibrium between lactate production and utilization. Lactate is considered a critical microbial end product in gut environments, as it can inhibit pathogens or be metabolized to propionate for utilization by host cells.

Funder

Precision Health Technologies

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3