Light-YOLOv5: A Lightweight Algorithm for Improved YOLOv5 in Complex Fire Scenarios

Author:

Xu Hao,Li Bo,Zhong Fei

Abstract

Fire-detection technology is of great importance for successful fire-prevention measures. Image-based fire detection is one effective method. At present, object-detection algorithms are deficient in performing detection speed and accuracy tasks when they are applied in complex fire scenarios. In this study, a lightweight fire-detection algorithm, Light-YOLOv5 (You Only Look Once version five), is presented. First, a separable vision transformer (SepViT) block is used to replace several Cross Stage Partial Bottleneck with 3 convolutions (C3) modules in the final layer of a backbone network to enhance both the contact of the backbone network to global information and the extraction of flame and smoke features; second, a light bidirectional feature pyramid network (Light-BiFPN) is designed to lighten the model while improving the feature extraction and balancing speed and accuracy features during a fire-detection procedure; third, a global attention mechanism (GAM) is fused into the network to cause the model to focus more on the global dimensional features and further improve the detection accuracy of the model; and finally, the Mish activation function and SIoU loss are utilized to simultaneously increase the convergence speed and enhance the accuracy. The experimental results show that compared to the original algorithm, the mean average accuracy (mAP) of Light-YOLOv5 increases by 3.3%, the number of parameters decreases by 27.1%, and the floating point operations (FLOPs) decrease by 19.1%. The detection speed reaches 91.1 FPS, which can detect targets in complex fire scenarios in real time.

Funder

National Natural Science Foundation of China

Initial Scientific Research Foundation of Hubei University of Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference29 articles.

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3