Perceptual Characteristics of Voice Identification in Noisy Environments

Author:

Zhou Yinghui,Liu Yali,Niu HuanORCID

Abstract

Auditory analysis is an essential method that is used to recognize voice identity in court investigations. However, noise will interfere with auditory perception. Based on this, we selected white noise, pink noise, and speech noise in order to design and conduct voice identity perception experiments. Meanwhile, we explored the impact of the noise type and frequency distribution on voice identity perception. The experimental results show the following: (1) in high signal-to-noise ratio (SNR) environments, there is no significant difference in the impact of noise types on voice identity perception; (2) in low SNR environments, the perceived result of speech noise is significantly different from that of white noise and pink noise, and the interference is more obvious; (3) in the speech noise with a low SNR (−8 dB), the voice information contained in the high-frequency band of 2930~6250 Hz is helpful for achieving accuracy in voice identity perception. These results show that voice identity perception in a better voice transmission environment is mainly based on the acoustic information provided by the low-frequency and medium-frequency bands, which concentrate most of the energy of the voice. As the SNR gradually decreases, a human’s auditory mechanism will automatically expand the receiving frequency range to obtain more effective acoustic information from the high-frequency band. Consequently, the high-frequency information ignored in the objective algorithm may be more robust with respect to identity perception in our environment. The experimental studies not only evaluate the quality of the case voice and control the voice recording environment, but also predict the accuracy of voice identity perception under noise interference. This research provides the theoretical basis and data support for applying voice identity perception in forensic science.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3