Error Correction Method of TIADC System Based on Parameter Estimation of Identification Model

Author:

Sun Ning,Li Jie,Zhang Debiao,Hu Chenjun,Peng Xiaofei,Jiang Jie,Wang Shuai,Zhang Zeyu,Cui Wentao

Abstract

The performance of analog-to-digital converters (ADCs) has reached a bottleneck due to the limitations of the manufacturing process and testing environment. Time-interleaved ADC (TIADC) technology can increase the sampling rate without changing the resolution. However, channel mismatch severely degrades the dynamic performance of the TIADC system. For the channel mismatch problem of TIADC, most of the current solutions have preconditions, such as eliminating only some kind of error or increasing the complexity of the hardware. A few methods can estimate multiple errors without changing the hardware circuit. To improve the dynamic performance of the TIADC system, on the basis of an in-depth study of the channel mismatch error of TIADC, according to the system identification theory, an identification model is designed to characterize the frequency characteristics of TIADC. Using the system observation data, the transfer function parameters of the system are recursively estimated. By constructing and verifying the identification model of the TIADC system, and then through the frequency domain correction method, a digital compensation filter is established to complete the error correction of the system. The test results of the four-channel TIADC high-speed data acquisition system show that the actual input and output characteristics of the test system are consistent with the nature of the identification model. The four channels of the TIADC system are provided by four sub-channels of two AD9653 chips, and the highest sampling rate of a single channel is 125MSPS. For sinusoidal input signals from 20 MHz to 150 MHz, the sampling system can achieve a signal-to-noise ratio (SNR) above 56.8 dB and spurious free dynamic range (SFDR) above 69.7 dB. The dynamic performance of the sampling system is nearly equivalent to that of its sub-ADC; the feasibility of the model identification method and the effectiveness of error correction are verified in simulation and experiment.

Funder

The National Natural Science Foundation of China

Shanxi Province Key R&D Program

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Accurate and Fast Method for Improving ADC Nonlinearity;Applied Computational Intelligence and Soft Computing;2023-09-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3