Convolutional Neural Network for Measurement of Suspended Solids and Turbidity

Author:

Lopez-Betancur Daniela,Moreno Ivan,Guerrero-Mendez CarlosORCID,Saucedo-Anaya Tonatiuh,González Efrén,Bautista-Capetillo CarlosORCID,González-Trinidad JuliánORCID

Abstract

The great potential of the convolutional neural networks (CNNs) provides novel and alternative ways to monitor important parameters with high accuracy. In this study, we developed a soft sensor model for dynamic processes based on a CNN for the measurement of suspended solids and turbidity from a single image of the liquid sample to be measured by using a commercial smartphone camera (Android or IOS system) and light-emitting diode (LED) illumination. For this, an image dataset of liquid samples illuminated with white, red, green, and blue LED light was taken and used to train a CNN and fit a multiple linear regression (MLR) by using different color lighting, we evaluated which color gives more accurate information about the concentration of suspended particles in the sample. We implemented a pre-trained AlexNet model, and an MLR to estimate total suspended solids (TSS), and turbidity values in liquid samples based on suspended particles. The proposed technique obtained high goodness of fit (R2 = 0.99). The best performance was achieved using white light, with an accuracy of 98.24% and 97.20% for TSS and turbidity, respectively, with an operational range of 0–800 mgL−1, and 0–306 NTU. This system was designed for aquaculture environments and tested with both commercial fish feed and paprika. This motivates further research with different aquatic environments such as river water, domestic and industrial wastewater, and potable water, among others.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3