A Study on the Influence of Zr on the Strengthening of the Al-10% Al2O3 Composite Obtained by Mechanical Alloying

Author:

Prosviryakov Alexey S.1ORCID,Bazlov Andrey I.1ORCID,Churyumov Alexander Yu.1ORCID,Mikhaylovskaya Anastasia V.1

Affiliation:

1. Department of Physical Metallurgy of Non-Ferrous Metals, National University of Science and Technology MISIS, Leninskiy Prospect 4, Moscow 119049, Russia

Abstract

Al2O3 is a traditional strengthening phase in aluminum matrix composites due to its high hardness and melting point. At the same time, zirconium is an important alloying element for heat-resistant aluminum alloys. However, its effect on the structure and properties of Al-Al2O3 composites remains unexplored at present. In this work, the effect of the addition of Zr (5 wt%) on the microstructure and strengthening of the Al-10 vol% Al2O3 composite was investigated for the first time. Composite materials with and without Zr addition were obtained through mechanical alloying as a result of ball milling for 20 h followed by multi-directional forging (MDF) at a temperature of 400 °C. OM, SEM and XRD were used to study the microstructure and its parameters. The work showed that the use of mechanical alloying and MDF contributes to the formation of dense composite samples with a nanocrystalline microstructure and a uniform distribution of alumina particles. The addition of Zr contributes to a 1.4-fold increase in the microhardness and yield strength of a compact sample at room temperature due to the formation of Al3Zr (L12) dispersoids. It was been shown that the largest contribution to the strength of both materials comes from grain boundary strengthening, which is at least 50% of the yield strength. The resulting composites exhibit high heat resistance. For example, their compressive yield strength at 350 °C is approximately 220 MPa.

Funder

Ministry of Science and Higher Education

Strategic Academic Leadership Program “Priority 2030”

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3