Abstract
Weightless and SigFox are both narrowband communication systems designed for the Internet of Things, along with some other counterparts such as LoRa (Long Range) and narrowband Internet of Things (NB-IoT). As systems dedicated specifically for long-range operations, they possess considerable processing gain for energetic link budget improvement and a remarkable immunity to interference. The paper describes outcomes of a measurement campaign during which the Weightless and SigFox performance was tested against variable interference, generated in an anechoic chamber. Results allow the quantitative appraisal of the system behavior under these harsh conditions with respect to different operational modes of the two investigated IoT systems. The outcomes are then investigated with respect to an intentional radio jammer attempting to block a base station (BS) operation by directly radiating an interfering signal towards it. An Interference Margin is proposed for a quantitative expression of a system’s resilience to jamming. This margin, calculated for all available configuration settings, allows the clear assessment of which combination of a system’s operational parameters does and which does not provide immunity to this type of radio attack.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference33 articles.
1. Machine-To-Machine Communications (M2M); Smart Metering Use Cases,2019
2. Cellular System Support for Ultra Low Complexity and Low Throughput Internet of Things,2015
3. Radio Interfaces in the Internet of Things Systems
4. "Borrowing Arrows with Thatched Boats": The Art of Defeating Reactive Jammers in IoT Networks
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献