Abstract
Accurately predicting the air quality in a piggery and taking control measures in advance are important issues for pig farm production and local environmental management. In this experiment, the NH3 concentration in a semi-automatic piggery was studied. First, the random forest algorithm (RF) and Pearson correlation analysis were combined to analyze the environmental parameters, and nine input schemes for the model feature parameters were identified. Three kinds of deep learning and three kinds of conventional machine learning algorithms were applied to the prediction of NH3 in the piggery. Through comparative experiments, appropriate environmental parameters (CO2, H2O, P, and outdoor temperature) and superior algorithms (LSTM and RNN) were selected. On this basis, the PSO algorithm was used to optimize the hyperparameters of the algorithms, and their prediction performance was also evaluated. The results showed that the R2 values of PSO-LSTM and PSO-RNN were 0.9487 and 0.9458, respectively. These models had good accuracy when predicting NH3 concentration in the piggery 0.5 h, 1 h, 1.5 h, and 2 h in advance. This study can provide a reference for the prediction of air concentrations in pig house environments.
Funder
The National Key Research and Development Program of China
The Modern Agroindustry Technology Research System
National Center of Technology Innovation For Pigs award and Subsidy Special Project
Subject
General Veterinary,Animal Science and Zoology
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献