Feather Damage Monitoring System Using RGB-Depth-Thermal Model for Chickens

Author:

Zhang Xiaomin,Zhang Yanning,Geng Jinfeng,Pan JinmingORCID,Huang Xinyao,Rao XiuqinORCID

Abstract

Feather damage is a continuous health and welfare challenge among laying hens. Infrared thermography is a tool that can evaluate the changes in the surface temperature, derived from an inflammatory process that would make it possible to objectively determine the depth of the damage to the dermis. Therefore, the objective of this article was to develop an approach to feather damage assessment based on visible light and infrared thermography. Fusing information obtained from these two bands can highlight their strengths, which is more evident in the assessment of feather damage. A novel pipeline was proposed to reconstruct the RGB-Depth-Thermal maps of the chicken using binocular color cameras and a thermal infrared camera. The process of stereo matching based on binocular color images allowed for a depth image to be obtained. Then, a heterogeneous image registration method was presented to achieve image alignment between thermal infrared and color images so that the thermal infrared image was also aligned with the depth image. The chicken image was segmented from the background using a deep learning-based network based on the color and depth images. Four kinds of images, namely, color, depth, thermal and mask, were utilized as inputs to reconstruct the 3D model of a chicken with RGB-Depth-Thermal maps. The depth of feather damage can be better assessed with the proposed model compared to the 2D thermal infrared image or color image during both day and night, which provided a reference for further research in poultry farming.

Funder

Key R&D Program of Zhejiang Province

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3