Autophagy Plays Multiple Roles in the Soft-Tissue Healing and Osseointegration in Dental Implant Surgery—A Narrative Review

Author:

Ripszky Totan AlexandraORCID,Imre Marina Melescanu,Parvu Simona,Meghea Daniela,Radulescu Radu,Enasescu Dan Sebastian AlexandruORCID,Moisa Mihai Radu,Pituru Silviu Mirel

Abstract

Dental endo-osseous implants have become a widely used treatment for replacing missing teeth. Dental implants are placed into a surgically created osteotomy in alveolar bone, the healing of the soft tissue lesion and the osseointegration of the implant being key elements to long-term success. Autophagy is considered the major intracellular degradation system, playing important roles in various cellular processes involved in dental implant integration. The aim of this review is an exploration of autophagy roles in the main cell types involved in the healing and remodeling of soft tissue lesions and implant osseointegration, post-implant surgery. We have focused on the autophagy pathway in macrophages, endothelial cells; osteoclasts, osteoblasts; fibroblasts, myofibroblasts and keratinocytes. In macrophages, autophagy modulates innate and adaptive immune responses playing a key role in osteo-immunity. Autophagy induction in endothelial cells promotes apoptosis resistance, cell survival, and protection against oxidative stress damage. The autophagic machinery is also involved in transporting stromal vesicles containing mineralization-related factors to the extracellular matrix and regulating osteoblasts’ functions. Alveolar bone remodeling is achieved by immune cells differentiation into osteoclasts; autophagy plays an important and active role in this process. Autophagy downregulation in fibroblasts induces apoptosis, leading to better wound healing by improving excessive deposition of extracellular matrix and inhibiting fibrosis progression. Autophagy seems to be a dual actor on the scene of dental implant surgery, imposing further research in order to completely reveal its positive features which may be essential for clinical efficacy.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3