Design Solutions for Slender Bars with Variable Cross-Sections to Increase the Critical Buckling Force

Author:

Botis Marius FlorinORCID,Cerbu CameliaORCID

Abstract

In large metal civil constructions (stadium roofs, bridges), slender bars can lose their stability under compression loading. There is a lack in the literature regarding design solutions and methods for increasing the critical buckling force of bars with variable cross-sections. The aim of this research is to present a numerical model with finite elements used for a comparative analysis of increasing the critical force of stability loss in cases of (i) bars with stepwise variation in the cross-sections and (ii) bars with continuous variation in the moment of inertia along the bar axis (parabolic, sinusoidal, triangular, and trapezoidal variation). Considering the large-scale applications in civil engineering, bars that were pin-connected at one end and simple-supported at the other end were analyzed. Firstly, the analytical model was described to compute the critical buckling force for bars with stepwise variation in the cross-sections. Then, a finite element model for a slender bar and the assumptions considered were presented. The results were computed using the MATLAB program based on the numerical model proposed and were validated with the analytical model for stepwise variable cross-sections of the bars. The numerical model was adapted for bars with continuous variation in the moment of inertia along the bar axis. It was shown that, by trapezoidal variation in the second moment of inertia along the axis of a bar, i.e., as buckling occurred in the elastic field, the critical buckling force could be increased by 3.556 times compared to a bar with a constant section. It was shown that there was certain bar with stepwise variation in the cross-section for which the critical buckling force was approximately equal to the one obtained for the bar with sinusoidal variation in the moment of inertia (increased by 3.427 times compared to a bar with a constant section).

Publisher

MDPI AG

Subject

General Materials Science

Reference20 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bionic topology optimization design and multi-objective optimization of guide arm;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2024-01-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3