Melatonin Prevents Transforming Growth Factor-β1-Stimulated Transdifferentiation of Renal Interstitial Fibroblasts to Myofibroblasts by Suppressing Reactive Oxygen Species-Dependent Mechanisms

Author:

Kim Jung-Yeon,Park Jae-HyungORCID,Jeon Eon JuORCID,Leem JaechanORCID,Park Kwan-Kyu

Abstract

Accumulating evidence suggests that the pineal hormone melatonin displays protective effects against renal fibrosis, but the mechanisms remain poorly understood. Here, we investigate the effect of the pineal hormone on transdifferentiation of renal fibroblasts to myofibroblasts invoked by transforming growth factor-β1 (TGF-β1). Increased proliferation and activation of renal interstitial fibroblasts after TGF-β1 treatment were attenuated by melatonin pretreatment. Mechanistically, melatonin suppressed Smad2/3 phosphorylation and nuclear co-localization of their phosphorylated forms and Smad4 after TGF-β1 stimulation. In addition, increased phosphorylations of Akt, extracellular signal-regulated kinase 1/2, and p38 after TGF-β1 treatment were also suppressed by the hormone. These effects of melatonin were not affected by pharmacological and genetic inhibition of its membrane receptors. Furthermore, melatonin significantly reversed an increase of intracellular reactive oxygen species (ROS) and malondialdehyde levels, and a decrease of the reduced glutathione/oxidized glutathione ratio after TGF-β1 treatment. Finally, TGF-β1-induced proliferation and activation were also suppressed by N-acetylcysteine. Altogether, these findings suggest that the pineal hormone melatonin prevents TGF-β1-induced transdifferentiation of renal interstitial fibroblasts to myofibroblasts via inhibition of Smad and non-Smad signaling cadcades by inhibiting ROS-mediated mechanisms in its receptor-independent manner.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Reference39 articles.

1. Renal interstitial fibrosis

2. TGF-β/Smad signaling in renal fibrosis

3. Targeting TGF-β Signaling in Kidney Fibrosis

4. The differential expression of TGF-β1, ILK and wnt signaling inducing epithelial to mesenchymal transition in human renal fibrogenesis: An immunohistochemical study;Kim;Int. J. Clin. Exp. Pathol.,2013

5. Disparate phospho-Smad2 levels in advanced type 2 diabetes patients with diabetic nephropathy and early experimental db/db mouse model

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3