Abstract
Accumulating evidence suggests that the pineal hormone melatonin displays protective effects against renal fibrosis, but the mechanisms remain poorly understood. Here, we investigate the effect of the pineal hormone on transdifferentiation of renal fibroblasts to myofibroblasts invoked by transforming growth factor-β1 (TGF-β1). Increased proliferation and activation of renal interstitial fibroblasts after TGF-β1 treatment were attenuated by melatonin pretreatment. Mechanistically, melatonin suppressed Smad2/3 phosphorylation and nuclear co-localization of their phosphorylated forms and Smad4 after TGF-β1 stimulation. In addition, increased phosphorylations of Akt, extracellular signal-regulated kinase 1/2, and p38 after TGF-β1 treatment were also suppressed by the hormone. These effects of melatonin were not affected by pharmacological and genetic inhibition of its membrane receptors. Furthermore, melatonin significantly reversed an increase of intracellular reactive oxygen species (ROS) and malondialdehyde levels, and a decrease of the reduced glutathione/oxidized glutathione ratio after TGF-β1 treatment. Finally, TGF-β1-induced proliferation and activation were also suppressed by N-acetylcysteine. Altogether, these findings suggest that the pineal hormone melatonin prevents TGF-β1-induced transdifferentiation of renal interstitial fibroblasts to myofibroblasts via inhibition of Smad and non-Smad signaling cadcades by inhibiting ROS-mediated mechanisms in its receptor-independent manner.
Funder
National Research Foundation of Korea
Subject
Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献