Planning of New Distribution Network Considering Green Power Certificate Trading and Carbon Emissions Trading

Author:

Wang Hujun,Shen Xiaodong,Liu Junyong

Abstract

In order to adapt to the development of the green power certificate trading (GPCT) and carbon emissions trading (CET) market, reduce the carbon emissions of the distribution network and increase the investment income, this paper proposes a new distribution network (NDN) planning and simulation operation bi-layer model with new energy (NE) as the main body, considering the GPCT and CET mechanisms. First, the upper layer determines the capacity and location of wind turbine (WT), photovoltaic (PV), hydraulic turbine (HT), micro turbine (MT), and energy storage (ES), while the lower simulation operation considers the operation costs of WT, PV, HT, MT, ES, load demand response (DR) and carbon emissions. The planning objective was to minimize the total cost of investment, operation and carbon emissions in the planning period. Then, on the basis of a traditional distribution network (TDN), security constraints, carbon emissions intensity, GPCT volume and CET volume were added. Finally, the cases study of the improved IEEE33 node and PG&E69 node NDN planning were provided. The results of NDN planning and TDN planning are compared and analyzed, and a sensitivity analysis was carried out to study the impact of GPCT and CET mechanisms with different price levels on investment planning. The results verify the applicability and rationality of the model.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference33 articles.

1. “14th Five-Year” energy plan and “30·60” dual-carbon goals in the process of achieving 12 key issues;Zeng;China Power Enterp. Manag.,2021

2. Carbon trading: Current schemes and future developments

3. Development Process, Current Situation and Prospect of China’s Carbon Trading Market;Zhou;Environ. Sci. Manag.,2020

4. Active Power Distribution System Planning Considering Demand-Side Resource Integration;Quan,2019

5. Review and Prospect of Distribution Network Planning Research Considering Access of Flexible Load;Qi;Autom. Electr. Power Syst.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3