Development of High-Performance Fly-Ash-Based Controlled Low-Strength Materials for Backfilling in Metropolitan Cities

Author:

Han Jingyu1,Jo Youngseok2,Kim Yunhee3ORCID,Kim Bumjoo3

Affiliation:

1. Department of R&D, Chemius Korea Co., Ltd., Suncheon 57942, Republic of Korea

2. Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720, USA

3. Department of Civil and Environmental Engineering, Dongguk University, Seoul 04620, Republic of Korea

Abstract

Controlled low-strength materials (CLSMs) have been developed using various byproducts for backfilling or void-filling around pipelines or culvert boxes. However, these CLSMs have encountered issues related to their inadequate placement around underground facilities, despite satisfying the performance requirements, especially flowability, recommended by the American Concrete Institute (ACI) 229 committee. In this study, a new CLSM is developed to ensure a significantly higher flowability, lower segregation, and faster installation compared with previously developed CLSMs. This is achieved through a series of laboratory tests. To enhance the flowability and prevent segregation, a calcium-sulfoaluminate-based binder and fly ash are used in combination with two types of additives. The measured flowability of the new CLSM is 700 mm, while its compressive strength and bleeding satisfy the general criteria specified by the ACI 229R-13. In addition, the performance of the developed CLSM is compared with that of predeveloped CLSMs. The new CLSM was not only shown to exhibit the highest flowability, but also to satisfy the specified requirements for compressive strength and bleeding. Overall, it is anticipated that the developed CLSM can significantly reduce the costs related to the disposal of old pavements, the installation of new pavements, and other construction expenses compared to the costs related to the conventional method, even though the expenses for the backfill materials could increase due to the higher production costs of CLSMs than soil. In addition, there is a need to investigate its field applicability in order to evaluate the precise costs, maintenance, and long-term stabilities after installation.

Funder

Korea Agency for Infrastructure Technology Advancement

Ministry of Land, Infrastructure and Transport

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3