Investigation and Evaluation of Winter Indoor Air Quality of Primary Schools in Severe Cold Weather Areas of China

Author:

Ma FushengORCID,Zhan ChanghongORCID,Xu Xiaoyang

Abstract

The indoor air quality (IAQ) in classrooms has attracted more and more attention. Unfortunately, there is limited information relating to IAQ in the primary schools in severe cold weather areas of China. In this study, a field investigation on the IAQ of a primary school of Shenyang in northeast China was carried out by physical measurements and questionnaire surveys. The carbon dioxide (CO2) concentration in selected classrooms was continuously measured for a week, and the corresponding ventilation rate was calculated. Meanwhile, the perceptions of the IAQ, the purpose and the comfort degree of window opening have also been recorded from 106 pupils, aged 9–12. The results indicate the ventilation rate is considerably inadequate in about 99% of the class time due to the low frequency of window opening. The average daily CO2 concentration in these classrooms is 1510–3863 ppm, which is far higher than the recommended value of 1000 ppm. Most pupils understand that the purpose of opening windows in winter is to improve air quality. However, there are big differences between the measurement results and subjective judgments of indoor air quality. Contrary to the high measured CO2 concentration, around 70% pupils consider the air fresh, and only 3.7% pupils are dissatisfied and even very dissatisfied with IAQ in their classroom. It is necessary to change the existing manual window opening mode, because the pupils’ subjective judgment affects the window opening behavior.

Funder

Liaoning Science and Technology Project

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference47 articles.

1. The ventilation problem in schools: literature review

2. Mechanisms underlying Children’s susceptibility to environmental toxicants;Faustman;Environ Health Perspect.,2000

3. Environmental hazards to children’s health in the modern world

4. Children's exposure to indoor air in urban nurseries-part I: CO2 and comfort assessment

5. Code for Design of School,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3