Centrally Adapted Optimal Control of Multiple Electric Water Heaters

Author:

Ritchie Michael J.ORCID,Engelbrecht Jacobus A. A.ORCID,Booysen Marthinus J.ORCID

Abstract

Breakthroughs in smart grid technology make it possible to deliver electricity in controlled and intelligent ways to improve energy efficiency between the user and the utility. Demand-side management strategies can reduce overall energy usage and shift consumption to reduce peak loads. Electric water heaters account for 40% of residential energy consumption. Since they are thermal storage devices, advanced control strategies can improve their efficiency. However, existing methods disregard the connection between the user and the grid. We propose a centrally adapted control model that allows for coordinated scheduling to adapt the optimal control schedule of each EWH, spreading the load into off-peak periods to ensure that the grid’s generation capacity is not exceeded. We consider two strategies for the delivery of hot water: temperature matching, and energy matching with Legionella sterilisation, and compare them to a baseline strategy where the thermostat is always switched on. Simulation results for a grid of 77 EWHs showed that an unconstrained peak load of 1.05 kW/EWH can be reduced as low as 0.4 kW/EWH and achieve a median energy saving per EWH of 0.38 kWh/day for the temperature matching strategy and 0.64 kWh/day for the energy matching strategy, without reducing the user’s comfort.

Funder

MTN South Africa

Eskom

Water Research Commission

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference48 articles.

1. Comfort, peak load and energy: Centralised control of water heaters for demand-driven prioritisation

2. Sizing domestic batteries for load smoothing and peak shaving based on real-world demand data

3. An Overview of Energy Efficiency and Demand Side Management in South Africahttps://www.esi-africa.com/wp-content/uploads/Tom_Skinner.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3