Author:
Hafner Jonas,Teuschel Marco,Schrattenholzer Jürgen,Schneider Michael,Schmid Ulrich
Abstract
Recently, organic electromechanical transducers have attracted intense scientific and technological interest due to their unique mechanical flexibility and their piezoelectric properties. However, the fabrication of organic MEMS devices is challenging. For example, a lift-off process cannot be used on polymers, because of the solvent in photoresists. Here, we present a straightforward and low-cost batch process for organic MEMS devices using standard micromachining techniques. As organic material we used the ferroelectric (co-)polymer poly(vinylidene fluoride-trifluorethylene) (P(VDF-TrFE)). The integration of the polymer in a CMOS-compatible process was optimized in terms of deposition and patterning of the polymer and the corresponding metal layers. Micromachined devices, such as capacitors and cantilevers, were fabricated and analysed. The ferroelectric perfomance was evaluated by electrical and electromechanical measurements. Our first results indicate that the proposed fabrication process is reliable resulting in well-functioning organic MEMS devices. We measured as piezoelectric constant a d33 of −32 pm/V with our organic P(VDF-TrFE) capacitors.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献