Self-Healing Potential of Geopolymer Concrete

Author:

Rajczakowska ,Habermehl-Cwirzen ,Hedlund ,Cwirzen

Abstract

Waste management is emerging as one of the most troublesome and critical problems of the upcoming decades. Therefore, the utilization of industrial by-products as building materials components has been widely studied in recent years. Geopolymer concrete, with binder entirely substituted by slag or fly ash, is one of the materials, which combines positive environmental impact with satisfying mechanical parameters. Although various properties of geopolymers have been examined, the autogeneous self-healing potential of this alternative binder has not been thoroughly verified yet. This paper aims to validate whether geopolymer concrete made of alkali activated slag is capable of self-repair. Four different mortar mixes with two types of slag and varying activation parameters were investigated. The polyvinyl alcohol (PVA) fibers were added in order to control the crack width. The 1.2 × 1.2 × 6 cm beams were pre-cracked with the use of three point bending test at 7 days after casting to achieve crack opening of approximately 300 µm. The effects of various exposure conditions on the healing process were examined, i.e., lime water, different sodium silicate solutions and water. The self-healing efficiency as well as the evolution of the crack recovery was assessed by the observation of the crack surface with the use of digital optical microscope. The healed area of the crack was calculated and compared for all the specimens by applying the image processing techniques. The morphology of the healing products as well as their chemical composition were examined with the use of Scanning Electron Microscope with Energy Dispersive Spectroscopy.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3