Multi-Species Host Use by the Parasitoid Fly Ormia lineifrons

Author:

Rogers Kyler J.1ORCID,Beckers Oliver M.1

Affiliation:

1. Department of Biological Sciences, Murray State University, 1101 Biology Building, Murray, KY 42071, USA

Abstract

Antagonistic species relationships such as parasitoid/host interactions lead to evolutionary arms races between species. Many parasitoids use more than one host species, requiring the parasitoid to adapt to multiple hosts, sometimes being the leader or the follower in the evolutionary back-and-forth between species. Thus, multi-species interactions are dynamic and show temporary evolutionary outcomes at a given point in time. We investigated the interactions of the multivoltine parasitoid fly Ormia lineifrons that uses different katydid hosts for each of its fly generations sequentially over time. We hypothesized that this fly is adapted to utilizing all hosts equally well for the population to persist. We quantified and compared the fly’s development in each of the four Neoconocephalus hosts. Cumulative parasitism rates ranged between ~14% and 73%, but parasitoid load and development time did not differ across host species. Yet, pupal size was lowest for flies using N. velox as a host compared to N. triops and other host species. Successful development from pupa to adult fly differed across host species, with flies emerging from N. triops displaying a significantly lower development success rate than those emerging from N. velox and the other two hosts. Interestingly, N. triops and N. velox did not differ in size and were smaller than N. robustus and N. nebrascensis hosts. Thus, O. lineifrons utilized all hosts but displayed especially low ability to develop in N. triops, potentially due to differences in the nutritional status of the host. In the multi-species interactions between the fly and its hosts, the poor use of N. triops may currently affect the fly’s evolution the most. Similarities and differences across host utilization and their evolutionary background are discussed.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Insect Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3