Trade-Offs among Immune Mechanisms: Bacterial-Challenged Spodoptera frugiperda Larvae Reduce Nodulation Reactions during Behavioral Fever

Author:

Zhang Lei1,Goodman Cynthia L.2,Ringbauer Joseph A.2,Jiang Xingfu1,Lv Weixiang13,Xie Dianjie1,Reall Tamra4,Stanley David2

Affiliation:

1. State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China

2. Biological Control of Insects Research Laboratory, USDA, Agricultural Research Service, Columbia, MO 65203, USA

3. Key Laboratory of Southwest China Wildlife Resources Conservation, China West Normal University, Nanchong 637002, China

4. MU Extension, University of Missouri, Kansas City, MO 64014, USA

Abstract

Insect innate immunity is composed of cellular and humoral reactions, the former acting via circulating hemocytes and the latter via immune signaling that lead to the production of antimicrobial peptides and phenol oxidase-driven melanization. Cellular immunity involves direct interactions between circulating hemocytes and invaders; it includes internalization and killing microbes (phagocytosis) and formation of bacterial-laden microaggregates which coalesce into nodules that are melanized and attached to body walls or organs. Nodulation can entail investing millions of hemocytes which must be replaced. We hypothesized that biologically costly hemocyte-based immunity is traded off for behavioral fevers in infected larvae of fall armyworms, Spodoptera frugiperda, that were allowed to fever. We tested our hypothesis by infecting larvae with the Gram-negative bacterium, Serratia marcescens, placing them in thermal gradients (TGs) and recording their selected body temperatures. While control larvae selected about 30 °C, the experimental larvae selected up 41 °C. We found that 4 h fevers, but not 2, 6 or 24 h fevers, led to increased larval survival. Co-injections of S. marcescens with the prostaglandin (PG) biosynthesis inhibitor indomethacin (INDO) blocked the fevers, which was reversed after co-injections of SM+INDO+Arachidonic acid, a precursor to PG biosynthesis, confirming that PGs mediate fever reactions. These and other experimental outcomes support our hypothesis that costly hemocyte-based immunity is traded off for behavioral fevers in infected larvae under appropriate conditions.

Funder

U.S. Department of Agriculture/Agricultural Research Service and by National Key Research and Development Program of China

National Natural Science Foundation of China

China Agriculture Research System of MOF and MARA

Government Procurement of Public Services of MARA

Basic Research Funds of Chinese Academy of Agricultural Sciences

Publisher

MDPI AG

Subject

Insect Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3