A Bioclimate-Based Maximum Entropy Model for Comperiella calauanica Barrion, Almarinez and Amalin (Hymenoptera: Encyrtidae) in the Philippines

Author:

Almarinez Billy Joel M.ORCID,Fadri Mary Jane A.,Lasina Richard,Tavera Mary Angelique A.,Carvajal Thaddeus M.,Watanabe Kozo,Legaspi Jesusa C.,Amalin Divina M.

Abstract

Comperiella calauanica is a host-specific endoparasitoid and effective biological control agent of the diaspidid Aspidiotus rigidus, whose outbreak from 2010 to 2015 severely threatened the coconut industry in the Philippines. Using the maximum entropy (Maxent) algorithm, we developed a species distribution model (SDM) for C. calauanica based on 19 bioclimatic variables, using occurrence data obtained mostly from field surveys conducted in A. rigidus-infested areas in Luzon Island from 2014 to 2016. The calculated the area under the ROC curve (AUC) values for the model were very high (0.966, standard deviation = 0.005), indicating the model’s high predictive power. Precipitation seasonality was found to have the highest relative contribution to model development. Response curves produced by Maxent suggested the positive influence of mean temperature of the driest quarter, and negative influence of precipitation of the driest and coldest quarters on habitat suitability. Given that C. calauanica has been found to always occur with A. rigidus in Luzon Island due to high host-specificity, the SDM for the parasitoid may also be considered and used as a predictive model for its host. This was confirmed through field surveys conducted between late 2016 and early 2018, which found and confirmed the occurrence of A. rigidus in three areas predicted by the SDM to have moderate to high habitat suitability or probability of occurrence of C. calauanica: Zamboanga City in Mindanao; Isabela City in Basilan Island; and Tablas Island in Romblon. This validation in the field demonstrated the utility of the bioclimate-based SDM for C. calauanica in predicting habitat suitability or probability of occurrence of A. rigidus in the Philippines.

Publisher

MDPI AG

Subject

Insect Science

Reference35 articles.

1. Employment in Agriculture (% of Total Employment, Philippines)http://data.worldbank.org/indicator/SL.AGR.EMPL.ZS?end=2015&locations=PH&start=2015&view=bar

2. Aspidiotus rigidusReyne (Hemiptera: Diaspididae): a devastating pest of coconut in the Philippines

3. First Philippine record of the parasitoid, Comperiella sp. (Hymenoptera: Encyrtidae): a potential biocontrol agent against Aspidiotus rigidus (Hemiptera: Diaspididae)

4. Comperiella calauanica sp. n. (Hymenoptera: Encyrtidae), an endoparasitoid of the invasive coconut scale, Aspidiotus rigidus Reyne (Hemiptera: Diaspididae) on Luzon Island, Philippines;Barrion;Asia Life Sci.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3