Increased RNAi Efficiency by dsEGFP-Induced Up-Regulation of Two Core RNAi Pathway Genes (OfDicer2 and OfAgo2) in the Asian Corn Borer (Ostrinia furnacalis)

Author:

Fan Yunhe,Abbas Mureed,Liu Xiaojian,Wang Yanli,Song Huifang,Li Tao,Ma Enbo,Zhu Kun YanORCID,Zhang Jianzhen

Abstract

RNA interference (RNAi) is a sequence-specific gene silencing mechanism that holds great promise for effective management of agricultural pests. Previous studies have shown that the efficacy of RNAi varies among different insect species, which limits its wide spread application in the field of crop protection. In this study, we identified and characterized six core RNAi pathway genes including OfDicer1, OfDicer2, OfR2D2, OfAgo1, OfAgo2, and OfAgo3 from the transcriptomic database of the Asian corn borer (Ostrinia furnacalis). Domain analysis showed that the six deduced proteins contained the necessary functional domains. Insect developmental stage- and tissue-specific expression analysis showed that five genes were expressed in all the stages and tissues examined except OfAgo3, which showed low expression in larvae, and high expression in pupae and adults and in the midgut. RT-qPCR was performed to examine the response of these six genes to exogenous double-stranded RNA (dsRNA). Interestingly, the transcript levels of OfDicer2 and OfAgo2 were significantly enhanced after the injection of dsEGFP at different time points and tissues investigated. Consequently, the RNAi efficiency in targeting the insect endogenous genes can be greatly enhanced in the hemolymph or midgut. Taken together, our investigations suggest that RNAi efficiency can be enhanced by pre-injection of dsRNA to induce the RNAi core machinery genes, which could be a useful strategy to improving RNAi efficiency for studying gene functions under laboratory conditions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Insect Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3