The Relationships between the Population Density of Fir Bark Beetles and Niche Breadth

Author:

Borkowski Andrzej1ORCID

Affiliation:

1. Department of Environmental Biology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7 Str, 25-406 Kielce, Poland

Abstract

Bark beetles are a significant link in the chain of diseases that lead to the accelerated dying of firs (Abies alba Mill.), a key species in the cultivation of stable mixed-tree stands. The aim of this work was to evaluate biotic interactions in populations of bark beetles that colonised natural traps made from firs. The tested hypothesis was that the niche breadth of the species increases with the increasing density of the population. The research was carried out in near-natural forests containing fir, growing in the Suchedniów-Oblęgorek Landscape Park in central Poland. Data were collected from 30 traps trees and 30 windfalls in the years 2010–2023. Cryphalus piceae Ratz. prefers heavily weakened trees, as shown by the fact that it colonised all of the natural traps, which lack any defensive reactions. The sampling method used in the study proved effective, as confirmed by the segregation of the niches of all of the bark beetles. Using nonlinear regression (linearisable model and piecewise linear regression), models were constructed that describe the niche breadths of the bark beetles. The niche parameter is correlated with the density of colonisation. The derived models explain around 77–84% of the variation in the niche breadth of bark beetles on natural traps. The mean relative errors of estimation do not exceed 20%. The niche breadth parameter obtained from the derived regression equations may be used in models that describe—for example—the impact of observed climate change on the population dynamics of bark beetles.

Funder

The Ministry of Science and Higher Education in Poland

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3