Nuclear Receptor FTZ-F1 Controls Locust Molt by Regulating the Molting Process of Locusta migratoria

Author:

Zhang Yichao12,Li Hongjing123,Liu Xiaoman123,Li Hongli123,Lan Qiuyan123,Wu Haihua12,Wang Yanli12,Zhang Jianzhen12,Zhao Xiaoming12ORCID

Affiliation:

1. Institute of Applied Biology, Shanxi University, Taiyuan 030006, China

2. Shanxi Key Laboratory of Nucleic Acid Biopesticides, Taiyuan 030006, China

3. College of Life Science, Shanxi University, Taiyuan 030006, China

Abstract

Fushi-tarazu factor 1 (FTZ-F1) is a class of transcription factors belonging to the nuclear receptor superfamily and an important molting regulator in insects; however, its detailed function in the molting process of Locusta migratoria is still unclear. This study identified two FTZ-F1 transcripts (LmFTZ-F1-X1 and LmFTZ-F1-X2) in L. migratoria. The classical domains of FTZ-F1 were present in their protein sequences and distinguished based on their variable N-terminal domains. Reverse-transcription quantitative polymerase chain reaction analysis revealed that LmFTZ-F1-X1 and LmFTZ-F1-X2 were highly expressed in the integument. RNA interference (RNAi) was used to explore the function of LmFTZ-F1s in the molting of the third-instar nymph. Separate LmFTZ-F1-X1 or LmFTZ-F1-X2 silencing did not affect the normal development of third-instar nymphs; however, the simultaneous RNAi of LmFTZ-F1-X1 and LmFTZ-F1-X2 caused the nymphs to be trapped in the third instar stage and finally die. Furthermore, the hematoxylin-eosin and chitin staining of the cuticle showed that the new cuticles were thickened after silencing the LmFTZ-F1s compared to the controls. RNA-seq analysis showed that genes encoding four cuticle proteins, two chitin synthesis enzymes, and cytochrome P450 303a1 were differentially expressed between dsGFP- and dsLmFTZ-F1s-injected groups. Taken together, LmFTZ-F1-X1 and LmFTZ-F1-X2 are involved in the ecdysis of locusts, possibly by regulating the expression of genes involved in cuticle formation, chitin synthesis, and other key molting processes.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanxi Province in China

Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3