Identification and Functional Analysis of the fruitless Gene in a Hemimetabolous Insect, Nilaparvata lugens

Author:

Wang Biyun1,Mao Zeping1,Chen Youyuan1,Ying Jinjun1,Wang Haiqiang1,Sun Zongtao1ORCID,Li Junmin1ORCID,Zhang Chuanxi1ORCID,Zhuo Jichong1ORCID

Affiliation:

1. State Key Laboratory for ManagingBiotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China

Abstract

The fruitless (fru) gene functions as a crucial “tuner” in male insect courtship behavior through distinct expression patterns. In Nilaparvata lugens, our previous research showed doublesex (dsx) influencing male courtship songs, causing mating failures with virgin females. However, the impact of fru on N. lugens mating remains unexplored. In this study, the fru homolog (Nlfru) in N. lugens yielded four spliceosomes: Nlfru-374-a/b, Nlfru-377, and Nlfru-433, encoding proteins of 374aa, 377aa, and 433aa, respectively. Notably, only Nlfru-374b exhibited male bias, while the others were non-sex-specific. All NlFRU proteins featured the BTB conserved domain, with NlFRU-374 and NlFRU-377 possessing the ZnF domain with different sequences. RNAi-mediated Nlfru or its isoforms’ knockdown in nymph stages blocked wing-flapping behavior in mating males, while embryonic knockdown via maternal RNAi resulted in over 80% of males losing wing-flapping ability, and female receptivity was reduced. Nlfru expression was Nldsx-regulated, and yet courtship signals and mating success were unaffected. Remarkably, RNAi-mediated Nlfru knockdown up-regulated the expression of flightin in macropterous males, which regulated muscle stiffness and delayed force response, suggesting Nlfru’s involvement in muscle development regulation. Collectively, our results indicate that Nlfru functions in N. lugens exhibit a combination of conservation and species specificity, contributing insights into fru evolution, particularly in Hemiptera species.

Funder

Ningbo Science and Technology Innovation 2025 Major Project

National Natural Science Foundation of China

Ningbo Natural Science Foundation

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3