The Food Source and Gut Bacteria Show Effects on the Invasion of Alien Pests—A Case of Bactrocera dorsalis (Hendel) (Diptera: Tephritidae)

Author:

Zhu Yanfei1ORCID,Han Rui1,Zhang Tong1,Yang Jiawen1,Teng Ziwen1ORCID,Fan Yinjun1,Sun Pengdong2,Lu Yongyue3ORCID,Ren Yonglin4ORCID,Wan Fanghao15ORCID,Zhou Hongxu1

Affiliation:

1. Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Centre for Bio-Invasions and Eco-Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China

2. Special Food Research Institute, Qingdao Agricultural University, Qingdao 266109, China

3. Department of Entomology, South China Agricultural University, Guangzhou 510642, China

4. College of Environmental and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia

5. Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 510642, China

Abstract

How alien pests invade new areas has always been a hot topic in invasion biology. The spread of the Bactrocera dorsalis from southern to northern China involved changes in food sources. In this paper, in controlled conditions, we take Bactrocera dorsalis as an example to study how plant host transformation affects gut bacteria by feeding it its favorite host oranges in the south, its favorite host peaches and apples in the north, and feeding it cucumbers as a non-favorite host plant, thereby further affecting their fitness during invasion. The result showed that, after three generations of feeding on cucumbers, Bactrocera dorsalis took longer to develop as a larva while its longevity and fecundity decreased and pre-adult mortality increased. Feeding it cucumbers significantly reduced the overall diversity of gut microbiota of Bactrocera dorsalis. The relative abundance of Enterobacter necessary for survival decreased, while the Empedobacter and Enterococcus increased, resulting in decreased carbohydrate transport and metabolism and increased lipid transport and metabolism. Feeding Bactrocera dorsalis Empedobacter brevis and Enterococcus faecalis resulted in a 26% increase in pre-adult mortality and a 2–3 d increase in adult preoviposition period (APOP). Additionally, Enterococcus faecalis decreased the longevity of female and male adults by 17 and 12 d, respectively, and decreased fecundity by 11%. We inferred that the shifted plant hosts played an important role in posing serious harm to Bactrocera dorsalis invading from the south to the north. Therefore, after an invasion of Bactrocera dorsalis into northern China, it is difficult to colonize cucumbers for a long time, but there is still a risk of short-term harm. The findings of this study have established that the interactions between an insect’s food source and gut bacteria may have an important effect on insect invasions.

Funder

Qingdao Science and Technology Benefiting the People Demonstration Project

Major Scientific Innovation Projects in Shandong Province

National Key R&D Program of China

Shandong Natural Science Foundation Youth Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3