Development and Metabolomic Profiles of Bactrocera dorsalis (Diptera: Tephritidae) Larvae Exposed to Phytosanitary Irradiation Dose in Hypoxic Environment Using DI-SPME-GC/MS

Author:

Shan Changyao1ORCID,Li Baishu1,Li Li1,Liu Qun1,Zou Hang1,Liu Tao1ORCID

Affiliation:

1. Institute of Equipment Technology, Chinese Academy of Inspection and Quarantine, No. A3, Gaobeidianbeilu, Chaoyang District, Beijing 100123, China

Abstract

X-ray irradiation and modified atmospheres (MAs) provide eco-friendly, chemical-free methods for pest management. Although a low-oxygen atmospheric treatment improves the performance of some irradiated insects, its influence on the irradiation of quarantine insects and its impacts on pest control efficacy have yet to be investigated. Based on bioassay results, this study employed direct immersion solid-phase microextraction (DI-SPME) combined with gas chromatography-mass spectrometry (GC-MS) to determine metabolic profiles of late third-instar B. dorsalis larvae under normoxia (CON, Air), hypoxia (95% N2 + 5% O2, HY), super-hypoxia (99.5% N2 + 0.5% O2, Sup-HY), irradiation-alone (116 Gy, IR-alone), hypoxia + irradiation (HY + IR) and super-hypoxia + irradiation (Sup-HY + IR). Our findings reveal that, compared to the IR-alone group, the IR treatment under HY and Sup-HY (HY + IR and Sup-HY + IR) increases the larval pupation of B. dorsalis, and weakens the delaying effect of IR on the larval developmental stage. However, these 3 groups further hinder adult emergence under the phytosanitary IR dose of 116 Gy. Moreover, all IR-treated groups, including IR-alone, HY + IR, and Sup-HY + IR, lead to insect death as a coarctate larvae or pupae. Pathway analysis identified changed metabolic pathways across treatment groups. Specifically, changes in lipid metabolism-related pathways were observed: 3 in HY vs. CON, 2 in Sup-HY vs. CON, and 5 each in IR-alone vs. CON, HY + IR vs. CON, and Sup-HY + IR vs. CON. The treatments of IR-alone, HY + IR, and Sup-HY + IR induce comparable modifications in metabolic pathways. However, in the HY + IR, and Sup-HY + IR groups, the third-instar larvae of B. dorsalis demonstrate significantly fewer changes. Our research suggests that a low-oxygen environment (HY and Sup-HY) might enhance the radiation tolerance in B. dorsalis larvae by stabilizing lipid metabolism pathways at biologically feasible levels. Additionally, our findings indicate that the current phytosanitary IR dose contributes to the effective management of B. dorsalis, without being influenced by radioprotective effects. These results hold significant importance for understanding the biological effects of radiation on B. dorsalis and for developing IR-specific regulatory guidelines under MA environments.

Funder

Chinese Academy of Inspection and Quarantine

State Administration for Market Regulation

Publisher

MDPI AG

Reference60 articles.

1. Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) is not invasive through Asia: It’s been there all along;Clarke;J. Appl. Entomol.,2019

2. DeMeyer, M., and Ekesi, S. (2016). Fruit Fly Research and Development in Africa—Towards a Sustainable Management Strategy to Improve Horticulture, Springer.

3. Clarke, A.R., and Measham, P.F. (2022). Competition: A Missing component of fruit fly (Diptera: Tephritidae) risk assessment and planning. Insects, 13.

4. Current activities in food irradiation as a sanitary and phytosanitary treatment in the Asia and the Pacific Region and a comparison with advanced countries;Ihsanullah;Food Control,2017

5. Phytosanitary irradiation for fresh horticultural commodities: Generic treatments, current issues, and next steps;Follett;Stewart Postharvest Rev.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3