Global Distribution of Aedes aegypti and Aedes albopictus in a Climate Change Scenario of Regional Rivalry

Author:

Laporta Gabriel Z.ORCID,Potter Alexander M.,Oliveira Janeide F. A.,Bourke Brian P.ORCID,Pecor David B.,Linton Yvonne-Marie

Abstract

Arboviral mosquito vectors are key targets for the surveillance and control of vector-borne diseases worldwide. In recent years, changes to the global distributions of these species have been a major research focus, aimed at predicting outbreaks of arboviral diseases. In this study, we analyzed a global scenario of climate change under regional rivalry to predict changes to these species’ distributions over the next century. Using occurrence data from VectorMap and environmental variables (temperature and precipitation) from WorldClim v. 2.1, we first built fundamental niche models for both species with the boosted regression tree modelling approach. A scenario of climate change on their fundamental niche was then analyzed. The shared socioeconomic pathway scenario 3 (regional rivalry) and the global climate model Geophysical Fluid Dynamics Laboratory Earth System Model v. 4.1 (GFDL-ESM4.1; gfdl.noaa.gov) were utilized for all analyses, in the following time periods: 2021–2040, 2041–2060, 2061–2080, and 2081–2100. Outcomes from these analyses showed that future climate change will affect Ae. aegypti and Ae. albopictus distributions in different ways across the globe. The Northern Hemisphere will have extended Ae. aegypti and Ae. albopictus distributions in future climate change scenarios, whereas the Southern Hemisphere will have the opposite outcomes. Europe will become more suitable for both species and their related vector-borne diseases. Loss of suitability in the Brazilian Amazon region further indicated that this tropical rainforest biome will have lower levels of precipitation to support these species in the future. Our models provide possible future scenarios to help identify locations for resource allocation and surveillance efforts before a significant threat to human health emerges.

Funder

Armed Forces Health Surveillance Division – Global Emerging Infections Surveillance

National Council for Scientific and Technological Development

São Paulo Research Foundation

Publisher

MDPI AG

Subject

Insect Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3