Identification and Expression Analysis of Chemosensory Genes in the Antennal Transcriptome of Chrysanthemum Aphid Macrosiphoniella sanborni

Author:

Zhong JianORCID,Wang Yuxin,Lu Yufan,Ma Xiaoou,Zhang Qian,Wang Xiaoyue,Zhang Qixiang,Sun Ming

Abstract

As one of the most destructive oligophagous pests, the chrysanthemum aphid (Macrosiphoniella sanborni) has seriously restricted the sustainable development of the chrysanthemum industry. Olfaction plays a critical role in the environmental perception of aphids, but very little is currently known about the chemosensory mechanism of M. sanborni. In this study, four MsanOBPs, four MsanCSPs, eight MsanORs, two MsanIRs and one MsanSNMP were identified among the 28,323 unigenes derived from the antennal transcriptome bioinformatic analysis of M. sanborni adults. Then, comprehensive phylogenetic analyses of these olfactory-related proteins in different aphid species were performed using multiple sequence alignment. Subsequently, the odor-specific and wing-specific expression profiles of these candidate chemosensory genes were investigated using quantitative real-time PCR. The data showed that most of these chemosensory genes exhibited higher expression levels in alate aphids. Among them, MsanOBP9, MsanOR2, MsanOR4, MsanOR43b-1, MsanCSP1, MsanCSP2, MsanCSP4, MsanIR25a and MsanIR40a in alate aphids showed remarkably higher expression levels than in apterous aphids under the effect of the host plant volatiles, indicating that these genes may take part in the specific behaviors of alate adults, such as host recognition, oviposition site selection and so on. This study lays the groundwork for future research into the molecular mechanism of olfactory recognition in M. sanborni.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Beijing Municipal Natural Science Foundation

the World-Class Discipline Construction and Characteristic Development Guidance Funds for Beijing Forestry University

Publisher

MDPI AG

Subject

Insect Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3