A BDGIM-Based Phase-Smoothed Pseudorange Algorithm for BDS-3 High-Precision Time Transfer

Author:

Tang JianORCID,Lyu Daqian,Zeng Fangling

Abstract

Single point positioning (SPP) can meet the requirements of the majority of real-time time transfer applications. Meanwhile, a single-frequency (SF) receiver is cheaper than a dual-frequency receiver. However, SPP performance can be greatly affected by large pseudorange observation noise. Phase smoothing the pseudorange is an effective approach to reduce pseudorange noise. Since the classical phase-smoothed pseudorange algorithm does not account for the effect of ionosphere delay, we propose a BDGIM-based phase-smoothed pseudorange algorithm to eliminate the ionospheric delay and apply it to BeiDou Navigation Satellite System (BDS-3) SPP time transfer. In this paper, we first evaluate the performance of the BeiDou global ionospheric delay correction model (BDGIM) and compare it with that of the BeiDou Klobuchar model to determine if it is practical to incorporate the BDGIM into our suggested method. The performance of the BDGIM is better than that of the Klobuchar model. The mean RMS value of the BDGIM is 2.6 Total Electron Content Unit (TECU). The average ionospheric correction rate of the BDGIM is 75.5%. Then, we investigate the performance of the improved SF SPP time transfer. The performance of the improved SPP time transfer is much better than that of the traditional SPP time transfer. Compared with the traditional time transfer, the average Type A uncertainty of the improved time transfer is 2.08 ns, which is reduced by about 11.1% from the time transfer without it. Regarding frequency stability, the modified Allan deviations of the improved time transfer are 1.43E-12 and 1.68E-13 at 960 s and 61,440 s, with improvements of 51.2% and 59.9%, respectively.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3