Abstract
This study presents an active noise control (ANC) algorithm using long short-term memory (LSTM) layers as a type of recurrent neural network. The filtered least-mean-square (FxLMS) algorithm is a widely used ANC algorithm, where the noise in a target area is reduced through a control signal generated from an adaptive filter. Artificial intelligence can enhance the reduction performance of ANC for specific applications. An LSTM is an artificial neural network for recognizing patterns in arbitrarily long sequence data. In this study, an ANC controller consisting of LSTM layers based on deep neural networks was designed for predicting a reference noise signal, which was used to generate the control signal to minimize the noise residue. The structure of the LSTM neural networks and procedure for training the LSTM controller for the ANC were determined. Simulations were conducted to compare the convergence time and performances of the ANC with the LSTM controller and those with a conventional FxLMS algorithm. The noise source adopted sounds from a single-cylinder diesel engine, while reference noises selected were single harmonics, superposed harmonics, and impulsive signals generated from the diesel engine. The characteristics of each algorithm were examined through a Fourier transform analysis of the ANC results. The simulation results demonstrated that the proposed ANC method with LSTM layers showed outstanding noise reduction capabilities in narrowband, broadband, and impulsive noise environments, without high computational cost and complexity relative to the conventional FxLMS algorithm.
Funder
Korea Institute of Energy Technology Evaluation and Planning
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference27 articles.
1. Process of Silencing Sound Oscillations;Lueg;U.S. Patent,1936
2. Active Noise Control Systems: Algorithms and DSP Implementations;Kuo,1995
3. Adaptive Signal Processing;Widrow,1985
4. Novel FxLMS Convergence Condition With Deterministic Reference
5. Theoretical convergence analysis of FxLMS algorithm
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献