Integration of Machine Learning-Based Attack Detectors into Defensive Exercises of a 5G Cyber Range

Author:

Mozo AlbertoORCID,Pastor AntonioORCID,Karamchandani AmitORCID,de la Cal LuisORCID,Rivera DiegoORCID,Moreno Jose IgnacioORCID

Abstract

Cybercrime has become more pervasive and sophisticated over the years. Cyber ranges have emerged as a solution to keep pace with the rapid evolution of cybersecurity threats and attacks. Cyber ranges have evolved to virtual environments that allow various IT and network infrastructures to be simulated to conduct cybersecurity exercises in a secure, flexible, and scalable manner. With these training environments, organizations or individuals can increase their preparedness and proficiency in cybersecurity-related tasks while helping to maintain a high level of situational awareness. SPIDER is an innovative cyber range as a Service (CRaaS) platform for 5G networks that offer infrastructure emulation, training, and decision support for cybersecurity-related tasks. In this paper, we present the integration in SPIDER of defensive exercises based on the utilization of machine learning models as key components of attack detectors. Two recently appeared network attacks, cryptomining using botnets of compromised devices and vulnerability exploit of the DoH protocol (DNS over HTTP), are used as the support use cases for the proposed exercises in order to exemplify the way in which other attacks and the corresponding ML-based detectors can be integrated into SPIDER defensive exercises. The two attacks were emulated, respectively, to appear in the control and data planes of a 5G network. The exercises use realistic 5G network traffic generated in a new environment based on a fully virtualized 5G network. We provide an in-depth explanation of the integration and deployment of these exercises and a complete walkthrough of them and their results. The machine learning models that act as attack detectors are deployed using container technology and standard interfaces in a new component called Smart Traffic Analyzer (STA). We propose a solution to integrate STAs in a standardized way in SPIDER for the use of trainees in exercises. Finally, this work proposes the application of Generative Adversarial Networks (GANs) to obtain on-demand synthetic flow-based network traffic that can be seamlessly integrated into SPIDER exercises to be used instead of real traffic and attacks.

Funder

European Union's Horizon 2020 Research and Innovation Programme

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference49 articles.

1. Survey on SDN based network intrusion detection system using machine learning approaches

2. The Mouseworld, a security traffic analysis lab based on NFV/SDN;Pastor;Proceedings of the 13th International Conference on Availability, Reliability and Security,2018

3. Simulating cyber attacks, defences, and consequences

4. Teaching Cybersecurity with DeterLab

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3