TESR: Two-Stage Approach for Enhancement and Super-Resolution of Remote Sensing Images

Author:

Ali Anas M.12ORCID,Benjdira Bilel13ORCID,Koubaa Anis1ORCID,Boulila Wadii14ORCID,El-Shafai Walid25ORCID

Affiliation:

1. Robotics and Internet-of-Things Laboratory, Prince Sultan University, Riyadh 12435, Saudi Arabia

2. Department of Electronics and Electrical Communications Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf 32952, Egypt

3. SE & ICT Laboratory, LR18ES44, ENICarthage, University of Carthage, Tunis 1054, Tunisia

4. RIADI Laboratory, University of Manouba, Manouba 2010, Tunisia

5. Security Engineering Laboratory, Computer Science Department, Prince Sultan University, Riyadh 11586, Saudi Arabia

Abstract

Remote Sensing (RS) images are usually captured at resolutions lower than those required. Deep Learning (DL)-based super-resolution (SR) architectures are typically used to increase the resolution artificially. In this study, we designed a new architecture called TESR (Two-stage approach for Enhancement and super-resolution), leveraging the power of Vision Transformers (ViT) and the Diffusion Model (DM) to increase the resolution of RS images artificially. The first stage is the ViT-based model, which serves to increase resolution. The second stage is an iterative DM pre-trained on a larger dataset, which serves to increase image quality. Every stage is trained separately on the given task using a separate dataset. The self-attention mechanism of the ViT helps the first stage generate global and contextual details. The iterative Diffusion Model helps the second stage enhance the image’s quality and generate consistent and harmonic fine details. We found that TESR outperforms state-of-the-art architectures on super-resolution of remote sensing images on the UCMerced benchmark dataset. Considering the PSNR/SSIM metrics, TESR improves SR image quality as compared to state-of-the-art techniques from 34.03/0.9301 to 35.367/0.9449 in the scale ×2. On a scale of ×3, it improves from 29.92/0.8408 to 32.311/0.91143. On a scale of ×4, it improves from 27.77/0.7630 to 31.951/0.90456. We also found that the Charbonnier loss outperformed other loss functions in the training of both stages of TESR. The improvement was by a margin of 21.5%/14.3%, in the PSNR/SSIM, respectively. The source code of TESR is open to the community.

Funder

Prince Sultan University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3