Biological Layer in Household Slow Sand Filters: Characterization and Evaluation of the Impact on Systems Efficiency

Author:

Lubarsky Helen,Fava Natália de Melo Nasser,Souza Freitas Bárbara LuízaORCID,Terin Ulisses Costa,Oliveira Milina,Lamon Atônio Wagner,Pichel Natalia,Byrne John AnthonyORCID,Sabogal-Paz Lyda PatriciaORCID,Fernandez-Ibañez PilarORCID

Abstract

Schmutzdecke, the biofilm formed on the top of the sand bed in household slow sand filters (HSSF) is a key factor for the filters’ high efficiency in removing particles and microorganisms from water. This paper aims to investigate the extracellular polymeric substances composition (carbohydrates and proteins), biomass, dissolved oxygen, and microbial community in two types of HSSFs and identify a correlation between them and their efficiency. A continuous- and an intermittent-HSSF (C-HSSF and I-HSSF) were studied to treat river water for 48 days. Their efficiencies for bacteria (E. coli and total coliforms), turbidity, and apparent color removals were analyzed. Results clearly showed an increase of carbohydrates (from 21.4/22.5 to 101.2/93.9 mg·g−1 for C-/I-HSSF) and proteins (from 34.9 to 217/307.8 mg g−1 for C-/I-HSSF), total solids (from 0.03/<0.03 to 0.11/0.19 g L−1 for C-/I-HSSF), dissolved oxygen depletion inside the filter (6.00 and 5.15 mg L−1 for C- and I-HSSF) and diversity of microorganisms over time, pointing out the schmutzdecke development. A clear improvement on the HSSFs’ efficiency was observed during operation, i.e., E. coli removal of 3.23 log and 2.98 log for total coliforms, turbidity from 60 to 95%, and apparent color from 50 to 90%.

Funder

Engineering and Physical Sciences Research Council

Royal Society of Chemistry

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3