From a Hard to Soft Approach for Flood Management in the Vietnamese Mekong Delta: Integrating Ecological Engineering for Urban Sustainability in My Tho City

Author:

Long Nguyen Van,Le Tu Dam Ngoc,Nguyen HoORCID,Khanh Duong Van,The Ngo Thi Minh,Do Duy Thinh,Cheng Yuning

Abstract

Flooding is one of the leading challenges faced by delta cities in the world. Flood risk management using flood control infrastructure (FCI) is a popular solution to prevent flood damage; however, this is receiving enormous criticism due to its negative impacts on urban ecosystems. Recently, there have been new approaches to flood risk management that gradually shifted the focus away from FCI, such as ecological infrastructure (EI) based approaches. However, the conventional thinking that cities cannot be safe without FCI seems an immutable one, especially in developing countries. This study firstly assessed human–river interaction in direct relation to FCI and outlined the limitations of FCI. Then, an urban ecology research model was used to conduct a case study in the Vietnamese Mekong Delta (VMD), in which the interaction between factors, including riverine urbanization, FCI formation dynamics, the changing hydrological regime, flood risk, and riverine ecosystem degradation were evaluated. Due to the dynamism and complexity of the interactions between humans and rivers at the VMD, this study attempts to demonstrate that building the ability to adapt to flood risks based on EI will have a crucial role in enhancing the sustainability of delta cities. Through a case study in My Tho City (MTC) a flood resilience management scenario for a riverine urban area along the Mekong River was developed to discuss the role of EI in flood risk reduction and the restoration of riverine native ecosystems. The findings from this study suggests that EI should be considered as an effective and indispensable design tool for the conservation of riparian ecological corridors and public open spaces—which is a major challenge for urban areas in the context of increasing climate change impacts in the VMD.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3