Modelling and Simulation of Pseudo-Noise Sequence-Based Underwater Acoustic OSDM Communication System

Author:

Liu LanjunORCID,Zhao Hao,Li Ming,Zhou Lin,Jin JiucaiORCID,Zhang Jie,Lv ZhichaoORCID,Ren Hui,Mao Jicun

Abstract

Orthogonal signal division multiplex (OSDM) is an emerging signal modulation technology which has a lower peak-to-average power ratio (PAPR) and a flexible subcarrier system architecture. Particularly, it can be seen as a bridge between the single-carrier modulation and the orthogonal frequency division multiplexing (OFDM) modulation in the frequency domain. Aiming at the development trend and demand of underwater acoustic hybrid and adaptive modulation communication technology, a pseudo-noise (PN) sequence-based underwater acoustic OSDM communication system is proposed in this paper. A data frame structure with PN sequence is designed to solve the multipath and Doppler effect of underwater acoustic channel. On the basis of the PN sequence, a compressive sensing method based on the orthogonal matching pursuit (OMP) algorithm and the minimum mean square error (MMSE) algorithm is designed for channel estimation and equalization. On the basis of the system construction, the relationship among the OSDM vector length M, the OSDM subcarrier number N, and the underwater acoustic channel length is further studied for adaptive modulation of underwater acoustic communication. Finally, the proposed system is verified by simulation. The OSDM system has lower and controllable PAPR. When the OSDM vector length M is bigger than the channel length, and the system subcarrier flexibility is guaranteed, the bit error rate (BER) of the OSDM system is lower than that of the OFDM system and the single-carrier system. The PN sequence-based compressive sensing channel estimation and equalization with the OMP and MMSE algorithms has a good performance to resist the multipath effect of underwater acoustic channel.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3