Corrosion-Resisting Nanocarbon Nanocomposites for Aerospace Application: An Up-to-Date Account

Author:

Kausar Ayesha123,Ahmad Ishaq123,Zhao Tingkai14

Affiliation:

1. NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, Northwestern Polytechnical University, Xi’an 710072, China

2. UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, iThemba LABS, Somerset West 7129, South Africa

3. NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, National Centre for Physics, Islamabad 44000, Pakistan

4. School of Materials Science & Engineering, Northwestern Polytechnical University, Xi’an 710072, China

Abstract

The design and necessity of corrosion-resisting nanocarbon nanocomposites have been investigated for cutting-edge aerospace applications. In this regard, nanocarbon nanofillers, especially carbon nanotubes, graphene, nanodiamond, etc. have been used to fill in various polymeric matrices (thermosets, thermoplastics, and conducting polymers) to develop anti-rusting space-related nanocomposites. This review fundamentally emphases the design, anti-corrosion properties, and application of polymer/nanocarbon nanocomposites for the space sector. An electron-conducting network is created in the polymers with nanocarbon dispersion to assist in charge transportation, and thus in the polymers’ corrosion resistance features. The corrosion resistance mechanism depends upon the formation of tortuous diffusion pathways due to nanofiller arrangement in the matrices. Moreover, matrix–nanofiller interactions and interface formation play an important role in enhancing the corrosion protection properties. The anticorrosion nanocomposites were tested for their adhesion, contact angle, and impedance properties, and NaCl tests and scratch tests were carried out. Among the polymers, epoxy was found to be superior corrosion-resisting polymer, relative to the thermoplastic polymers in these nanocomposites. Among the carbon nanotubes, graphene, and nanodiamond, the carbon nanotube with a loading of up to 7 wt.% in the epoxy matrix was desirable for corrosion resistance. On the other hand, graphene contents of up to 1 wt.% and nanodiamond contents of 0.2–0.4 wt.% were desirable to enhance the corrosion resistance of the epoxy matrix. The impedance, anticorrosion, and adhesion properties of epoxy nanocomposites were found to be better than those of the thermoplastic materials. Despite the success of nanocarbon nanocomposites in aerospace applications, thorough research efforts are still needed to design high-performance anti-rusting materials to completely replace the use of metal components in the aerospace industry.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3