Si–Fe–C–N Coatings for Biomedical Applications: A Combinatorial Approach

Author:

Skjöldebrand CharlotteORCID,Hulsart-Billström Gry,Engqvist Håkan,Persson CeciliaORCID

Abstract

Ceramic coatings may prolong the lifetime of joint implants. Certain ions and wear debris may however lead to negative biological effects. SiN-based materials may substantially reduce these effects, but still need optimization for the application. In this study, a combinatorial deposition method enabled an efficient evaluation of a range of Si–Fe–C–N coating compositions on the same sample. The results revealed compositional gradients of Si (26.0–33.9 at.%), Fe (9.6–20.9 at.%), C (8.2–13.9 at.%) and N (39.7–47.2 at.%), and low oxygen contaminations (0.3–0.6 at.%). The mechanical properties varied with a hardness (H) ranging between 13.7–17.3 GPa and an indentation modulus (M) between 190–212 GPa. Both H and M correlated with the Si (H and M increased as Si increased) and Fe (H and M decreased as Fe increased) content. A slightly columnar morphology was observed in cross-sections, as well as a surface roughness in the nm range. A cell study revealed adhering pre-osteogenic MC3T3 cells, with a morphology similar to that of cells seeded on a tissue culture plastic control. The investigated coatings could be considered for further investigation due to the ability to tune their mechanical properties while maintaining a smooth surface, together with their promising in vitro cell response.

Funder

Seventh Framework Programme

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3