Direct Growth of Flower-Shaped ZnO Nanostructures on FTO Substrate for Dye-Sensitized Solar Cells

Author:

Umar Ahmad,Akhtar Mohammad,Almas Tubia,Ibrahim Ahmed,Al-Assiri Mohammed,Masuda YoshitakeORCID,Rahman Qazi,Baskoutas SotiriosORCID

Abstract

The proposed work reports that ZnO nanoflowers were grown on fluorine-doped tin oxide (FTO) substrates via a solution process at low temperature. The high purity and well-crystalline behavior of ZnO nanoflowers were established by X-ray diffraction. The morphological characteristics of ZnO nanoflowers were clearly revealed that the grown flower structures were in high density with 3D floral structure comprising of small rods assembled as petals. Using UV absorption and Raman spectroscopy, the optical and structural properties of the ZnO nanoflowers were studied. The photoelectrochemical properties of the ZnO nanoflowers were studied by utilizing as a photoanode for the manufacture of dye-sensitized solar cells (DSSCs). The fabricated DSSC with ZnO nanoflowers photoanode attained reasonable overall conversion efficiency of ~1.40% and a short-circuit current density (JSC) of ~4.22 mA cm−2 with an open circuit voltage (VOC) of 0.615 V and a fill factor (FF) of ~0.54. ZnO nanostructures have given rise to possible utilization as an inexpensive and efficient photoanode materials for DSSCs.

Funder

Deanship of Scientific Research (DSR), Najran University, Najran

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3