Abstract
The proposed work reports that ZnO nanoflowers were grown on fluorine-doped tin oxide (FTO) substrates via a solution process at low temperature. The high purity and well-crystalline behavior of ZnO nanoflowers were established by X-ray diffraction. The morphological characteristics of ZnO nanoflowers were clearly revealed that the grown flower structures were in high density with 3D floral structure comprising of small rods assembled as petals. Using UV absorption and Raman spectroscopy, the optical and structural properties of the ZnO nanoflowers were studied. The photoelectrochemical properties of the ZnO nanoflowers were studied by utilizing as a photoanode for the manufacture of dye-sensitized solar cells (DSSCs). The fabricated DSSC with ZnO nanoflowers photoanode attained reasonable overall conversion efficiency of ~1.40% and a short-circuit current density (JSC) of ~4.22 mA cm−2 with an open circuit voltage (VOC) of 0.615 V and a fill factor (FF) of ~0.54. ZnO nanostructures have given rise to possible utilization as an inexpensive and efficient photoanode materials for DSSCs.
Funder
Deanship of Scientific Research (DSR), Najran University, Najran
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献