Is It Possible to Predict a Forest Insect Outbreak? Backtesting Using Remote Sensing Data

Author:

Kovalev Anton1ORCID,Tarasova Olga23,Soukhovolsky Vladislav4,Ivanova Yulia5

Affiliation:

1. Center of Forest Ecology and Productivity, Russian Academy of Sciences, 117997 Moscow, Russia

2. Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, 630091 Novosibirsk, Russia

3. Department of Ecology and Nature Management, Siberian Federal University, 660041 Krasnoyarsk, Russia

4. V.N. Sukachev Institute of Forest, Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk, Russia

5. Institute of Biophysics, Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk, Russia

Abstract

In this study, methods are proposed for analyzing the susceptibility of forest stands to attacks by forest insects on the basis of Earth remote sensing data. As an indicator of the state of forest stands, we proposed to use a parameter of the sensitivity of a vegetation index (normalized difference vegetation index; NDVI) during a vegetative period to changes in the radiative temperature of the territory (land surface temperature; LST) determined from satellite data of the Terra/Aqua system. The indicator was calculated as a spectrum of a response function in an integral equation linking changes of NDVI to those of LST. Backtesting was carried out using data from two outbreaks of the Siberian silk moth Dendrolimus sibiricus Tschetv. and outbreaks of the white mottled sawyer Monochamus urussovi Fischer and of the four-eyed fir bark beetle Polygraphus proximus Blandford in taiga forests of Krasnoyarsk Territory in Russia. In addition, the state of fir stands in the year 2023 was examined when damage to the forest stands was not yet noticeable, but Siberian silk moth adults were found in pheromone traps. It was shown that the proposed indicator of susceptibility of forest stands changed significantly 2–3 years before the pest outbreak in outbreak foci of the studied areas. Thus, the proposed indicator can be used to predict outbreaks of insect pests. The proposed approach differs from commonly used remote sensing methods in that, rather than using absolute values of remote indicators (such as, for example, NDVI), it focuses on indicators of the susceptibility of these remote indicators to the characteristics of the natural environment. Since any given point on the planet is characterized by a seasonally varying temperature, it is always possible to determine the sensitivity of a remote sensing indicator to changes in the environment that are not directly related to the absolute value of the indicator. Future studies are expected to examine susceptibility indices as a function of forest stand location and species, and to examine the length of spatial correlation of susceptibility indices, which may provide information on the possible extent of future insect outbreaks.

Funder

Russian Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3