Integrating Remote Sensing Techniques and Meteorological Data to Assess the Ideal Irrigation System Performance Scenarios for Improving Crop Productivity

Author:

Gaznayee Heman Abdulkhaleq A.1ORCID,Zaki Sara H.1,Al-Quraishi Ayad M. Fadhil2ORCID,Aliehsan Payman Hussein1,Hakzi Kawa K.3ORCID,Razvanchy Hawar Abdulrzaq S.3,Riksen Michel4ORCID,Mahdi Karrar4ORCID

Affiliation:

1. Department of Forestry, College of Agricultural Engineering Science, Salahaddin University-Erbil, Erbil 44003, Iraq

2. Petroleum and Mining Engineering Department, Faculty of Engineering, Tishk International University, Erbil 44001, Iraq

3. Department of Soil and Water, College of Agricultural Engineering Science, Salahaddin University-Erbil, Erbil 44003, Iraq

4. Soil Physics and Land Management Group, Wageningen University & Research, 6700 AA Wageningen, The Netherlands

Abstract

To increase agricultural productivity and ensure food security, it is important to understand the reasons for variations in irrigation over time. However, researchers often avoid investigating water productivity due to data availability challenges. This study aimed to assess the performance of the irrigation system for winter wheat crops using a high-resolution satellite, Sentinel 2 A/B, combined with meteorological data and Google Earth Engine (GEE)-based remote sensing techniques. The study area is located north of Erbil city in the Kurdistan region of Iraq (KRI) and consists of 143 farmer-owned center pivots. This study also aimed to analyze the spatiotemporal variation of key variables (Normalized Difference Moisture Index (NDMI), Normalized Difference Vegetation Index (NDVI), Precipitation (mm), Evapotranspiration (ETo), Crop evapotranspiration (ETc), and Irrigation (Hours), during the wheat-growing winter season in the drought year 2021 to understand the reasons for the variance in field performance. The finding revealed that water usage fluctuated significantly across the seasons, while yield gradually increased from the 2021 winter season. In addition, the study revealed a notable correlation between soil moisture based on the (NDMI) and vegetation cover based on the (NDVI), and the increase in yield productivity and reduction in the yield gap, specifically during the middle of the growing season (March and April). Integrating remote sensing with meteorological data in supplementary irrigation systems can improve agriculture and water resource management by boosting yields, improving crop quality, decreasing water consumption, and minimizing environmental impacts. This innovative technique can potentially enhance food security and promote environmental sustainability.

Funder

Ayad M. Fadhil Al-Quraishi

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3